Hybrid asymptotic-numerical approach for estimating first-passage-time densities of the two-dimensional narrow capture problem.
نویسندگان
چکیده
A hybrid asymptotic-numerical method is presented for obtaining an asymptotic estimate for the full probability distribution of capture times of a random walker by multiple small traps located inside a bounded two-dimensional domain with a reflecting boundary. As motivation for this study, we calculate the variance in the capture time of a random walker by a single interior trap and determine this quantity to be comparable in magnitude to the mean. This implies that the mean is not necessarily reflective of typical capture times and that the full density must be determined. To solve the underlying diffusion equation, the method of Laplace transforms is used to obtain an elliptic problem of modified Helmholtz type. In the limit of vanishing trap sizes, each trap is represented as a Dirac point source that permits the solution of the transform equation to be represented as a superposition of Helmholtz Green's functions. Using this solution, we construct asymptotic short-time solutions of the first-passage-time density, which captures peaks associated with rapid capture by the absorbing traps. When numerical evaluation of the Helmholtz Green's function is employed followed by numerical inversion of the Laplace transform, the method reproduces the density for larger times. We demonstrate the accuracy of our solution technique with a comparison to statistics obtained from a time-dependent solution of the diffusion equation and discrete particle simulations. In particular, we demonstrate that the method is capable of capturing the multimodal behavior in the capture time density that arises when the traps are strategically arranged. The hybrid method presented can be applied to scenarios involving both arbitrary domains and trap shapes.
منابع مشابه
A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملAn Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part I: Two-Dimensional Domains
The mean first passage time (MFPT) is calculated for a Brownian particle in a bounded two-dimensional domain that contains N small non-overlapping absorbing windows on its boundary. The reciprocal of the MFPT of this narrow escape problem has wide applications in cellular biology where it may be used as an effective first order rate constant to describe, for example, the nuclear export of messe...
متن کاملMathematical modeling and numerical computation of narrow escape problems.
The narrow escape problem refers to the problem of calculating the mean first passage time (MFPT) needed for an average Brownian particle to leave a domain with an insulating boundary containing N small well-separated absorbing windows, or traps. This mean first passage time satisfies the Poisson partial differential equation subject to a mixed Dirichlet-Neumann boundary condition on the domain...
متن کاملAn Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems
The mean first passage time (MFPT) is calculated for a Brownian particle in a bounded twoor three-dimensional domain that contains N small non-overlapping absorbing windows on its boundary. The reciprocal of the MFPT of such narrow escape problems has wide applications in cellular biology where it may be used as an effective first order rate constant to describe, for example, the nuclear export...
متن کاملTwo-dimensional Axisymmetric Electromechanical Response of Piezoelectric, Functionally Graded and Layered Composite Cylinders
A mixed semi-analytical cum numerical approach is presented in this paper which accounts for the coupled mechanical and electrical response of piezoelectric, functionally graded (FG) and layered composite hollow circular cylinders of finite length. Under axisymmetric mechanical and electrical loadings, the three-dimensional problem (3D) gets reduced to a two-dimensional (2D) plane strain proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E
دوره 94 4-1 شماره
صفحات -
تاریخ انتشار 2016